Chapter 14. Statistics

Question-1

Find the mean deviation from the mean for the following data:

Solution:

$$\bar{x} = \frac{\Sigma \times i}{n} = \frac{80}{8} = 10$$

$$\sum_{i=1}^{8} |x_i - \bar{x}| = 6 + 3 + 2 + 1 + 0 + 2 + 3 + 7 = 24$$
M.D. $(\bar{x}) = 24/8 = 3$

Question-2

Find the mean deviation from the mean for the following data: 6.5, 5, 5.25, 5.5, 4.75, 4.5, 6.25, 7.75, 8.5

Solution:

$$\bar{x} = \frac{\Sigma \times i}{n} = \frac{54}{9} = 6$$

$$\sum_{i=1}^{8} |x_i - \bar{x}| = 0.5 + 1 + 0.75 + 0.5 + 1.25 + 1.5 + 0.25 + 1.75 + 2.5 = 10$$

$$M.D.(\bar{x}) = 10/9 = 1.1$$

Question-3

Find the mean deviation from the mean for the following data: 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Solution:

$$\bar{x} = \frac{\Sigma \times_i}{n} = \frac{500}{10} = 50$$

$$\sum_{i=1}^{8} |x_i - \bar{x}| = 12 + 20 + 2 + 10 + 8 + 5 + 13 + 4 + 4 + 6 = 84$$

$$M.D.(\bar{x}) = 84/10 = 8.4$$

Find the mean deviation from the mean for the following data: 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

Solution:

$$\bar{x} = \frac{\Sigma \times i}{n} = \frac{168}{12} = 14$$

$$\sum_{i=1}^{8} |x_i - \bar{x}| = 1 + 3 + 2 + 0 + 3 + 1 + 4 + 2 + 3 + 4 + 2 + 3 = 28$$

$$M.D.(\bar{x}) = 28/12 = 2.33$$

Ouestion-5

Find the mean deviation from the mean for the following data: 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Solution:

$$\bar{x} = \frac{\Sigma \times_i}{n} = \frac{500}{10} = 50$$

$$\sum_{i=1}^{8} |x_i - \bar{x}| = 14 + 22 + 4 + 8 + 10 + 5 + 3 + 4 + 1 + 1 = 72$$

$$M.D.(\bar{x}) = 72/10 = 7.2$$

Question-12

Find the mean deviation from the median for the following data: 34, 66, 30, 38, 44, 50, 40, 60, 42, 51

Solution:

No of observations n = 10

Arrangement in ascending order are as follows:

30, 34, 38, 40, 42, 44, 50, 51, 60, 66. Median is 5th and 6th term i.e 42 and 44.

Therefore the median is (42 + 44)/2 = 43 $\sum |x_i| - \text{Median}| = 13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 17 + 23$ Hence M.D (Median) = $|x_i| - \text{Median}|/n = 87/10 = 8.7$

Find the mean deviation from the median for the following data:

Solution:

No of observations n = 10

Arrangement in ascending order are as follows:

22, 24, 25, 27, 28, 29, 30, 31, 41, 42

Median is 5th and 6th term i.e 28 and 29.

Therefore the median is (28 + 29)/2 = 28.5

$$\sum |x_i| - \text{Median}| = 6.5 + 4.5 + 3.5 + 1.5 + 0.5 + 0.5 + 1.5 + 2.5 + 12.5 + 13.5$$

Hence M.D (Median) = $|x_i|$ - Median $|x_i|$ = 47/10 = 4.7

Question-14

Find the mean deviation from the median for the following data:

Solution:

No of observations n = 10

Arrangement in ascending order are as follows:

34, 38, 42, 44, 47, 48, 55, 53, 63, 70,

Median is 5th and 6th term i.e 47 and 48.

Therefore the median is (47 + 48)/2 = 47.5

$$\sum |x_i| - \text{Median}| = 13.5 + 9.5 + 5.5 + 3.5 + 0.5 + 0.5 + 7.5 + 5.5 + 15.5 + 22.5$$

Hence M.D (Median) = $|x_i|$ - Median $|x_i|$ = 84/10 = 8.4

Find the arithmetic mean of the series 1, 2, 2^2 ,, 2^{n-1} .

Solution:

$$\sum_{x=1}^{x=1} + 2 + 2^2 + \dots + 2^{n-1}$$

Sum are in G.P

$$\therefore \sum_{x=\frac{1(2^{n}-1)}{2-1}} = 2^{n} - 1$$

A.M =
$$\sum_{x}/n = (2^{n}-1)/n$$

Question-19

Find the mean and variance for the following data:

Solution:

$$\frac{1}{x} = \frac{\sum x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9.$$

The respective $(x_i - \overline{x})^2$ are 3^2 , 2^2 , 1^2 , 3^2 , 4^2 , 5^2 , 1^2 , 3^2 .

$$\sum (x_i - \overline{x})^2 = 9 + 4 + 1 + 9 + 16 + 25 + 1 + 9 = 74$$

Hence variance $(\sigma^2) = 74/8 = 9.25$

Find the mean and variance for the following data:

2, 4, 5, 6, 8, 17

Solution:

$$\frac{1}{x} = \frac{\sum x_i}{n} = \frac{2+4+5+6+8+17}{6} = \frac{42}{6} = 7.$$

The respective $(x_i - \frac{1}{x})^2$ are 5^2 , 3^2 , 2^2 , 1^2 , 1^2 , 10^2 .
 $\sum (x_i - \frac{1}{x})^2 = 25 + 9 + 4 + 1 + 1 + 100 = 140$
Hence variance $(\sigma^2) = 140/6 = 23.33$

Question-21

Find the mean for the following data: First *n* natural numbers

Solution:

$$\frac{1}{N} = \frac{\Sigma \times_i}{n} = \frac{1+2+3.....+n}{n} = \frac{\frac{n(n+1)}{2}}{\frac{2}{n}} = \frac{n+1}{2}$$

[Hint: First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5,40.5-44.5,44.5-48.5, 48.5-52.5 and the proceed]

Solution:

Classes	Xi	$y_i = (x_i - 42.5)/4$	fi	f _i y _i	f _i y _i ²
32.5-36.5	34.5	-2	15	-30	60
36.5-40.5	38.5	-1	17	-17	17
40.5-44.5	42.5	0	21	0	0
44.5-48.5	46.5	1	22	22	22
48.5-52.5	50.5	2	25	50	100
Total			100	25	199

Mean diameter of the circles = $\frac{7}{8}$ = $\left[42.5 + \frac{25}{100} \times 4\right]$ = 43.5

Variance $(\sigma^2) = [(4)^2/100][199 - 625/100] = 30.84$

Hence the Standard Deviation is $(\sigma) = \sqrt{30.84} = 5.55$

Question-29

[Hint: Compare the variance of two groups. The group with greater variance is more variable]

Solution:

classes	xi	$v_i = (x_i-45)/10$	Group A			Group B		
			fi	fiyi	$f_i y_i^2$	fi	fiyi	f _i y _i ²
10-20	15	-3	9	-27	81	18	-54	162
20-30	25	-2	17	-34	68	22	-44	88
30-40	35	-1	32	-32	32	40	-40	40
40-50	45	0	23	0	0	18	0	0
50-60	55	1	40	40	40	32	32	32
60-70	65	2	18	36	72	8	16	32
70-80	75	3	1	3	9	2	6	18
Total			140	-14	302	140	-84	372

Group A

Variance $(\sigma^2) = [(10)^2/140][302 - 196/140] = 214.7$

Group B

Variance $(\sigma^2) = [(10)^2/140][372 - 7056/140] = 229.7$

The variance group B is more than group A. Therefore group B has more variable.

The mean and variance of 8 observations are 9 and 9.25, respectively. If six of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.

Solution:

Let the remaining two observations be x and y.

Then mean =
$$\frac{6+7+10+12+12+13+x+y}{8}$$
 = 9
 $60 + x + y = 72$
 $x + y = 12$ (i)
Variance = $\frac{(6-9)^2+(7-9)^2+(10-9)^2+(12-9)^2+(13-9)^2+(x-9)^2+(y-9)^2}{8}$ = 9.25
 $(-3)^2+(-2)^2+(1)^2+(3)^2+(3)^2+(4)^2+x^2+y^2-18(x+y)+2\times 9^2=9.25\times 8$
 $x^2+y^2-216+210=74$
 $x^2+y^2=80$ (ii)
But from (i)

$$x^2 + y^2 = 144 - 2xy$$
(iii)

$$144 - 2xy = 80$$

Subtracting (iv) from (ii)

$$x^2 + y^2 - 2xy = 80 - 64$$

$$(x - y)^2 = 16$$

$$x - y = \pm 4$$
(v)

Hence solving (i) and (v)

$$x = 8$$
, $y = 4$ and $x = 4$, $y = 8$

Therefore the remaining two observations are 4 and 8.

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are 2, 4, 10, 12, 14, find the remaining two observations.

Solution:

Let the remaining two observations be x and y.

Then mean =
$$\frac{2+4+10+12+14+x+y}{7}$$
 = 8
 $42 + x + y = 56$
 $x + y = 14$ (i)
Variance = $\frac{(2-8)^2+(4-8)^2+(40-8)^2+(12-8)^2+(14-8)^2+(x-8)^2+(y-8)^2}{7}$ = 16
 $(-6)^2+(-4)^2+(2)^2+(4)^2+(6)^2+x^2+y^2-16(x+y)+2\times8^2=16\times7$
 $x^2+y^2-224+236=112$
 $x^2+y^2=100$ (ii)
But from (i)
 $x^2+y^2=196-2xy$ (iii)
 $\therefore 196-2xy=100$
 $2xy=96$ (iv)
Subtracting (iv) from (ii)
 $x^2+y^2-2xy=100-96$
 $(x-y)^2=4$
 $x-y=\pm 2$ (v)
Hence solving (i) and (v)
 $x=8,y=6$ and $x=6,y=8$

Therefore the remaining two observations are 8 and 6.

The mean and variance of 6 observations are 8 and 4, respectively. If each observation is multiplied by 3, find the new mean and new standard deviation of the resulting observations.

Solution:

Let the observations be x_1 , x_2 , x_3 ,, x_{20} and \bar{x} be their mean. Then

$$8 = \frac{1}{6} \sum_{i=1}^{6} (x_i - \bar{x})^2$$
or
$$\sum_{i=1}^{6} (x_i - \bar{x})^2 = 48$$

If each observation is multiplied by 3, the resulting observations are $3x_1$, $3x_2$, $3x_3$,, $3x_{20}$.

Their new mean
$$\bar{x} = \frac{3(x_1 + x_2 + x_3 + + x_n)}{n} = 3\bar{x} = 3 \times 8 = 24$$

and new variance $\frac{1}{6} \sum_{i=1}^{6} (3x_i - \bar{x})^2 = \frac{1}{6} \sum_{i=1}^{6} (3x_i - 3\bar{x})^2 = \frac{3}{6} \sum_{i=1}^{6} (x_i - \bar{x})^2 = 3 \times 48 = 144$
Therefore the new standard deviation is $\sqrt{644} = 12$

Question-34

Given that \bar{x} is the mean and σ^2 is the variance of n observations x_1 , x_2 , x_3 , x_n . Prove that the mean and variance of the observations ax_1 , ax_2 , ax_3 , ax_n are $a\bar{x}$ and $a^2\sigma^2$, respectively, ($a\neq 0$).

Solution:

Let the observations be x_1 , x_2 , x_3 ,, x_n and \bar{x} be their mean. Then $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

If each observation is multitplied by a, the resulting observations are $ax_1, ax_2, ax_3, \dots ax_n$ Their new mean $\bar{x} = \frac{a(x_1 + x_2 + x_3 + \dots + x_n)}{n} = a\bar{x}$

And new variance $\frac{1}{n}\sum_{i=1}^{n}(a_{xi}-\bar{x})^{2}=\frac{1}{n}\sum_{i=1}^{n}(a_{xi}-a_{xi})^{2}=\frac{a}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}=a\sigma^{2}$

Hence proved.

The mean of 20 observations are found to be 10. On rechecking, it was found that an observation 8 was incorrect. Calculate the correct mean in each of the following cases:

- (i) If the wrong item is omitted.
- (ii) If it is replaced by 12.

Solution:

Let the observations be x_1 , x_2 , x_3 , ..., x_{20} and \bar{x} be their mean. Then $\bar{x} = 10$ $2 = \frac{1}{20} \sum_{i=1}^{20} (x_i - \bar{x})^2 \text{ or } \sum_{i=1}^{20} (x_i - \bar{x})^2 = 40$

(i) Observation 8 is omitted.

New mean =
$$\bar{x} = \frac{20 \times 10 - 8}{19} = 10.11$$

(ii) Observation 8 is replaced by 12.

Difference =
$$12 - 8 = 4$$

New mean =
$$\bar{x} = \frac{20 \times 10 + 4}{20} = 10.2$$

Question-36

Prove that
$$(x_1 - \bar{x}) + (x_2 - \bar{x}) + \dots + (x_n - \bar{x}) = 0$$
 where $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$

Solution:

$$(x_1-\overline{x})+(x_2-\overline{x})+\dots\dots(x_n-\overline{x}) \ \equiv \ x_1+x_2+x_3\dots\dots x_n-n\frac{(x_1+x_2+x_3+\dots\dots x_n)}{n} \ \equiv \ 0.$$

Prove the identity
$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{j=1}^{n} x_j^2 - n\overline{x}^2 = \sum_{j=1}^{n} x^2 - \frac{(\sum_{j=1}^{n} x_j)^2}{n}$$
.

Solution:

$$\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$= \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\overline{x} + \overline{x}^{2})$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2\overline{x} \sum_{i=1}^{n} x_{i} + n\overline{x}^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - 2\overline{x} n\overline{x} + n\overline{x}^{2} \text{ (Since } \sum_{i=1}^{n} x_{i} = n\overline{x} \text{)}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - n(\sum_{i=1}^{n} \frac{x_{i}}{n})^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n}(\sum_{i=1}^{n} x_{i})^{2}$$

Question-38

The mean of 9 items is 15. If one more item is added to this series, the mean becomes 16. Find the value of the 10th item.

Solution:

Let the value of 9 items be x_1, x, x_2, \dots, x_9

$$15 = \frac{x_1 + x_2 + \dots + x_9}{9} : x_1 + x_2 + \dots + x_9 = 15 \times 9 = 135$$

Let x₁₀ be the 10th item

AM of
$$x_1, x_2, \dots, x_9, x_{10} = 16$$

$$16 = \frac{x_1 + x_2 + x_{10}}{10} \div x_1 + x_2 + x_{10} = 160$$

$$135 + x_{10} = 160$$

The average weight of a group of 25 items was calculated to be 78.4kg. It was later discovered that a weight was misread as 69kg instead of 96kg. Calculate correct average.

Solution:

No. of items = 25

Incorrect average = 78.4kg Incorrect reading of weight of an item = 69kg Correct reading of weight of an item = 96kg Let the variable weight be denoted by 'x'

Incorrect
$$\sum_{x=1}^{\infty} \frac{Incorrect \sum_{x=25}^{\infty}}{78.4 = \frac{Incorrect \sum_{x=25}^{\infty}}{25}}$$

$$78.4 = \frac{\text{Incorrect} \sum x}{25}$$

New correct \sum_{x} - Incorrect weight of an item + correct weight of an item

Correct
$$_{\bar{x}} = \frac{\text{correct}}{25} = \frac{1987}{25} = 79.48 \text{ kg}$$

Question-40

The mean of 9 items is 15. If one more item is added to this series, the mean becomes 16. Find the value of the 10th item.

Solution:

Let the value of 9 items be $x_1, x_1, x_2, \dots, x_9$

$$15 = \frac{x_1 + x_2 + \dots + x_9}{9} : x_1 + x_2 + \dots + x_9 = 15 \times 9 = 135$$

Let x₁₀ be the 10th item

AM of
$$x_{1,}x_{2,}....x_{9,}x_{10} = 16$$

$$16 = \frac{x_1 + x_2 + x_{10}}{10} : x_1 + x_2 + x_{10} = 160$$

$$135 + x_{10} = 160$$

